Teoremas de incompletitud de Gödel
- Teoremas de incompletitud de Gödel
- En lógica matemática se conocen como teoremas de incompletitud de Gödel dos célebres teoremas demostrados por Kurt Gödel en 1930. Un tanto simplificado, el primer teorema de incompletitud de Gödel afirma que:
"En todo sistema formal consistente que contenga los números naturales con su aritmética es posible construir una sentencia de la cual no es posible probar ni su veracidad ni su falsedad dentro del sistema".
Enciclopedia Universal.
2012.
Mira otros diccionarios:
Teoremas de incompletitud de Gödel — Kurt Gödel a los 19 años de edad, cinco años antes de la demostración de los teoremas. Los teoremas de incompletitud de Gödel son dos célebres teoremas de lógica matemática demostrados por Kurt Gödel en 1930. Ambos están relacionados con la… … Wikipedia Español
Kurt Gödel — Para el lenguaje de programación, véase Gödel (lenguaje de programación). Kurt Gödel Kurt Gödel Nacimiento 28 de abril … Wikipedia Español
Teorema de completitud de Gödel — El teorema de completitud de Gödel es un importante teorema de la lógica matemática, que fue demostrado por primera vez por Kurt Gödel en 1929 y que en su forma más conocida establece lo siguiente: En una lógica de primer orden, toda fórmula que… … Wikipedia Español
Metamatemática — La metamatemática es el estudio matemático de los fundamentos de las matemáticas. Contenido 1 Contexto histórico del concepto 1.1 La paradoja de Richard 1.2 La demostración de Zermelo … Wikipedia Español
Axiomas de Zermelo-Fraenkel — Los axiomas de Zermelo Fraenkel, formulados por Ernst Zermelo y Adolf Fraenkel, son un sistema axiomático concebido para formular la teoría de conjuntos. Normalmente se abrevian como ZF o en su forma más común, complementados por el axioma de… … Wikipedia Español
Prueba de consistencia — Saltar a navegación, búsqueda En lógica matemática, un sistema formal es consistente si no contiene una contradicción, o, en forma más precisa, no existe una proposición φ tal que se puede demostrar o deducir simultáneamente la proposición φ y su … Wikipedia Español
Metalógica — La metalógica es el estudio de las propiedades y los componentes de los sistemas lógicos.[1] Contenido 1 Propiedades metalógicas 1.1 Consistencia 1.2 Decidibilidad … Wikipedia Español
Filosofía de la matemática — Saltar a navegación, búsqueda La filosofía de las matemáticas es una rama de la filosofía. Según Michael Dummett puede considerarse que hay cuatro preguntas fundamentales sobre el contenido de la filosofía de las matemáticas: ¿Cómo sabemos que… … Wikipedia Español
Fundamentos de la matemática — Los fundamentos de las matemáticas es un término a veces usado para ciertos campos de las matemáticas, como la lógica matemática, teoría de conjuntos axiomática, teoría de prueba, teoría de modelos y la teoría de recursividad. La búsqueda de… … Wikipedia Español
Completitud semántica — En lógica, se llama completitud semántica, o simplemente completitud, o completud, a una propiedad metateórica que pueden tener los sistemas lógicos. Se dice que un sistema lógico es semánticamente completo cuando todas las fórmulas lógicamente… … Wikipedia Español